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Abstract
We study theoretically the spectral transmission properties of a multilayer structure in which the
refractive index of the layers follows a self-similar arithmetical sequence named ‘The
1s-counting sequence’, which is related to the Pascal’s triangle. The transmittance spectrum is
intermediate between that of a periodic structure and that of a random structure, and shows
clearly properties of scaling and self-similarity for all incident angles and TE and TM
polarizations.

1. Introduction

Since the experimental work on quasicrystals by Shechtman
et al [1], intensive investigations have been made of the
structure and physical properties of quasiperiodic deterministic
structures such as one-dimensional quasiperiodic multilayers.
These systems present properties not observed in periodic
or completely disordered structures. Merlin et al [2] were
the first to grow a Fibonacci lattice of GaAs and AlAs
and they studied its x-ray diffraction and Raman scattering
properties. Since then, many other interesting studies of
propagation of electrons, electromagnetic waves and acoustic
waves have been reported in quasiperiodic multi-layered one-
dimensional structures with several profiles like those of
Fibonacci, Cantor, Rudin–Shapiro, Thue–Morse, and others
[3–5]. Of particular interest is the understanding of the optical
propagation, localization and transmission of optical waves in
this type of structures, which are different from the periodic or
random structures due to the long correlation effects induced
by the quasiperiodicity [6]. These multilayers may have
promising technological applications in non-linear optics as
well as in the design of optical devices like soft x-ray filters,
efficient photovoltaic solar cells [6–8], etc. In this work
we propose a model for a new aperiodic multilayer whose
refractive index is modulated by a deterministic numerical

3 Author to whom any correspondence should be addressed.

sequence named ‘the 1s-counting sequence’, formed by the
number of 1s in the binary representation of the natural
numbers [9]. This sequence is related to the self-similar
sequence formed by the quantity of odd entries in each row of
the Pascal’s triangle, which is named the Gould’s sequence [9].
In an article published formerly [10] a calculation was made
of the electronic transmission for a finite superlattice where
the barrier width is modulated by the Gould’s sequence. For
the calculations we use the transfer matrix method, where the
transfer matrix is formed by the product of dynamical matrices
for each interface and propagation matrices for each layer.

2. Theoretical model and method of calculation

The 1s-counting sequence is generated by counting the number
of 1s in the binary representation of the natural numbers. For
example, the natural numbers 0, 1, 2, 3, 4, 5, 6, 7, etc can
be represented, respectively, in the binary numeral system
by 0, 1, 10, 11, 100, 101, 110, 111, etc. Counting the
number of 1s in each binary representation, we are left with the
sequence P = 0, 1, 1, 2, 1, 2, 2, 3, . . .. This sequence can be
constructed recursively. For step zero, we take 0 as the initiator.
For step one, we sum 1 to 0 and we make a concatenation with
the initiator, obtaining 0, 1. For step two, we again sum 1 to
these last numbers and we make again a concatenation with
the preceding numbers to obtain 0, 1, 1, 2. For step three,
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we sum 1 once more to the four last numbers and we make
again the concatenation to obtain 0, 1, 1, 2, 1, 2, 2, 3, and so
on. Every step doubles the length of the sequence. Then, we
construct the sequence following the recursive formula A j =
{A j−1} & {1 + A j−1}; for j = 0, 1, 2, . . . ,∞, with A0 = 0 as
the initial value; here the symbol & means concatenation. For
step S, the number of terms of the sequence is 2S . Since the
sequence can be constructed recursively, it has the property of
self-similarity. For example, if we take the sequence by pairs
(0, 1), (1, 2), (1, 2), (2, 3), . . ., this sequence also follows the
original sequence, and also for quartets, octets, etc. Also, if we
underline every second term of the sequence, we can reproduce
the original sequence.

The multilayer structure we propose is made of N = 2L

layers, each one having a refractive index given by

nP = n1 + (�)(P) (1)

where n1 is an initial refractive index for the first layer, �

is a small increment, S = L is the number of the step for
the sequence, and P takes the values of the terms of the
sequence for a given value of S, for each layer of the structure,
whose growth direction is the x axis. This multilayer structure
can be easily fabricated using the available technology as has
been recently demonstrated for the case of a Fibonacci one-
dimensional multilayer [11] prepared using the porous silicon
technology.

In order to calculate the transmittance, we use the theory
presented in [12] to build the transfer matrix of the structure.
Considering the xz plane as the plane of incidence, the electric
field vector of a plane wave, which is a solution of the
electromagnetic wave equation, can be written as

�E(�r , t) = �E(x)ei(βz−ωt)

for an isotropic and homogeneous medium in the z direction.
Here β is the z component of the propagating wavevector, and
ω the angular frequency. The magnetic field is given by �B =
1
iω∇ × �E . The electric field in the incident medium (refractive
index n0), in the layers, and in the substrate (refractive index
ns) can be written as

E(x) = E1 j e
ik j x + E2 j e

−ik j x .

Here the first and second terms represent waves propagating
to the right and to the left in the x direction, and k j =
(ω/c)n j cos θ j is the wavevector for medium j , with j =
0, 1, . . . , N, S; being N the number of layers in the
structure. Considering only propagation to the right, E2s =
0. Propagation from medium 0 to medium S through the
multilayer structure can be described by

(
E10

E20

)
=

(
M11 M12

M21 M22

)(
E1S

0

)

where the 2 × 2 transfer matrix is given by

(
M11 M12

M21 M22

)
= D−1

0

( N∏
l=1

Dl Pl D−1
l

)
DS

with

Pj =
(

e−k j d j 0
0 eik j d j

)
.

Here

D j =
(

1 1
n j cos θ j −n j cos θ j

)
for TE polarization

and

D j =
(

cos θ j cos θ j

n j −n j

)
for TM polarization.

The matrix D j is called the dynamical or transmission
matrix, and arises from the continuity conditions on the electric
and magnetic fields at the interface between media j −1 and j .
Pj is the kinematical or propagation matrix inside layer j , with
d j the thickness of the layer. The transmittance T is given by
the ratio of the Poynting power flow of the transmitted wave to
that of the incident wave, and is given in terms of the transfer
matrix, by

T = ns cos θs

n0 cos θ0

∣∣∣∣ 1

M11

∣∣∣∣
2

.

We suppose nondispersive media without absorption.

3. Numerical results

We consider that the multilayer structure is situated in vacuum,
with n0 = nS = 1.0. We take n1 = 2.0 and � = 0.1
in (1). The optical thickness n j d j of the layers is a quarter
wavelength λ0/4, where λ0 is a central wavelength in the
vacuum. In figure 1 we show the refractive index profile of
three finite multilayer structures; figure 1(a) is constructed with
32 equal unit cells, each one having eight layers with refractive
index 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, and 2.8 in that order,
which can represent a periodic structure with a well defined
period. The deterministic aperiodic structure in figure 1(b)
is formed by generating the refractive indices np using (1),
where the refractive index is modulated by the 1s-counting
sequence; here we cannot define a specific unit cell as is the
case for aperiodic structures. Finally, the disordered structure
in figure 1(c) is constructed using the same previous values for
nP, but randomly assigned to each layer; here also we cannot
define a specific unit cell. In all three cases the structure has
N = 256 layers. We can construct multilayer stacks having
N = 2L slabs with L = 1, 2, . . . , 7, finding similar results, as
we explain later.

The transmittance for these three multilayers is shown in
figure 2 for normal incidence. In figure 2(a) the spectrum for
the periodic structure shows four gaps where the transmittance
T = 0. Figure 2(b) corresponds to the deterministic
aperiodic multilayer. Here the minima of T are located in
the same positions as in figure 2(a), and besides this new
minima appear in the transmittance T . The spectrum for
the random structure shown in figure 2(c) has no gaps, as
expected. We observe that for long wavelengths compared to
the wavelength in vacuum, the transmittance is very similar for
the three structures, whereas for wavelengths comparable with
the wavelength in vacuum the periodic structure shows Bragg
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Figure 1. Refractive index profile as a function of the optical thickness for structures with N = 256 layers in air with n0 = nS = 1:
(a) periodic structure formed with 32 cells, each one having eight slabs with refractive index values 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8;
(b) deterministic aperiodic structure with refractive index nP = n1 + (�)(P) modulated by the 1s-counting sequence; here n1 = 2.0 and
� = 0.1; (c) random structure formed with the same refractive index as in (b) now accommodated at random in the multilayer.

Figure 2. Transmittance spectrum for a structure with N = 256 layers as in figure 1. (a) Periodic, (b) deterministic aperiodic, (c) random.

transmittance whereas the transmittance for the aperiodic and
random structures is self-similar or completely random. We
see that the behavior of the transmittance spectrum for the
deterministic aperiodic structure is intermediate between that
of the periodic structure and the one for the random structure.

In figures 3–9 we compare the transmittances at normal
incidence for the structures having N = 2, 4, 8, 16, 32, 64, and
128 slabs with the transmittance corresponding to a multilayer
with N = 256 slabs. In figures 3–8 the dashed line corresponds
to the transmittance versus λ0/λ in the range 0.0–1.0 for the

3



J. Phys.: Condens. Matter 21 (2009) 155403 X I Saldaña et al

Figure 3. Transmittance spectra of multilayer deterministic aperiodic structures at normal incidence situated in vacuum. The dashed line
corresponds to the transmittance as a function of λ0/λ in the range 0.0–1.0 of a multilayer with N = 2 slabs; the solid line corresponds to the
transmittance as a function of λ0/λ in the range 0.0–1/2L with L = 7 of the total range 0.0–1.0 of the parameter λ0/λ for the multilayer with
N = 256 slabs.

Figure 4. Transmittance spectra of multilayer deterministic aperiodic structures at normal incidence situated in vacuum. The dashed line
corresponds to the transmittance as a function of λ0/λ in the range 0.0–1.0 of a multilayer with N = 4 slabs, the solid line corresponds to the
transmittance as a function of λ0/λ in the range 0.0–1/2L with L = 6 of the total range 0.0–1.0 of the parameter λ0/λ for the multilayer with
N = 256 slabs.

Figure 5. Transmittance spectra of multilayer deterministic aperiodic structures at normal incidence situated in vacuum. The dashed line
corresponds to the transmittance as a function of λ0/λ in the range 0.0–1.0 of a multilayer with N = 8 slabs; the solid line corresponds to the
transmittance as a function of λ0/λ in the range 0.0–1/2L with L = 5 of the total range 0.0–1.0 of the parameter λ0/λ for the multilayer with
N = 256 slabs.
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Figure 6. Transmittance spectra of multilayer deterministic aperiodic structures at normal incidence situated in vacuum. The dashed line
corresponds to the transmittance as a function of λ0/λ in the range 0.0–1.0 of a multilayer with N = 16 slabs; the solid line corresponds to the
transmittance as a function of λ0/λ in the range 0.0–1/2L with L = 4 of the total range 0.0–1.0 of the parameter λ0/λ for the multilayer with
N = 256 slabs.

Figure 7. Transmittance spectra of multilayer deterministic aperiodic structures at normal incidence situated in vacuum. The dashed line
corresponds to the transmittance as a function of λ0/λ in the range 0.0–1.0 of a multilayer with N = 32 slabs; the solid line corresponds to the
transmittance as a function of λ0/λ in the range 0.0–1/2L with L = 3 of the total range 0.0–1.0 of the parameter λ0/λ for the multilayer with
N = 256 slabs.

structures with N = 2, 4, 8, 16, 32, and 64 slabs; the solid line
corresponds to the transmittance as a function of λ0/λ in the
range 0.0–1/2L (L = 6, 5, 4, 3, 2, 1) of the total range 0.0–1.0
for the superlattice with N = 256 layers. In figure 9, the circles
represent the transmittance for a structure with N = 128 slabs
in the range 0.0–1.0 of the parameter λ0/λ and the solid line
corresponds to the transmittance as a function of λ0/λ in the
range 0.0–1/2L (L = 7) of the total range 0.0–1.0 for the
superlattice with N = 256 layers. In this case we observe
that the transmittance spectrum is almost the same for the two
structures shown.

We observe that the transmittance spectrum of the smaller
structures is contained in the spectrum of the superlattice with

N = 256 layers. Expanding the 1/2L (L = 1, 2, . . . , 7) part
of the transmittance spectrum of the N = 256 layer stack
in such a way that it coincides with the whole transmittance
spectrum of the smaller multilayers, we see that the positions
of the maxima and minima of the transmittance spectrum are
the same for all the structures, the minima of the spectrum
being deeper as the number N increases. Likewise, we find
that the transmittance spectrum of the structure with N =
128 layers contains the transmittance of the multilayers with
N = 2, 4, 8, 16, 32, and 64 slabs. Finally, we can say
that the transmittance spectrum corresponding to a multilayer
structure having N = 2L slabs contains the transmittance for
the structures with N = 2L ′

(L ′ = L − 1, L − 2, . . . , 1) in a
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Figure 8. Transmittance spectra of multilayer deterministic aperiodic structures at normal incidence situated in vacuum. The dashed line
corresponds to the transmittance as a function of λ0/λ in the range 0.0–1.0 of a multilayer with N = 64 slabs; the solid line corresponds to the
transmittance as a function of λ0/λ in the range 0.0–1/2L with L = 2 of the total range 0.0–1.0 of the parameter λ0/λ for the multilayer with
N = 256 slabs.

Figure 9. Transmittance spectra of multilayer deterministic aperiodic structures at normal incidence situated in vacuum. The circles
corresponds to the transmittance as a function of λ0/λ in the range 0.0–1.0 of a multilayer with N = 128 slabs; the solid line corresponds to
the transmittance as a function of λ0/λ in the range 0.0–1/2L with L = 1 of the total range 0.0–1.0 of the parameter λ0/λ for the multilayer
with N = 256 slabs. In this case both spectra are almost equal.

range equal to 1/2L ′′
(L ′′ = 1, 2, . . . , L − 1) the total range

(0.0–1.0) of the parameter λ0/λ for the larger structure. The
scaling of the spectra by a factor of two is also a sign of self-
similarity. This property is conserved for oblique incidence and
both TE and TM polarizations. As an example, we calculate
the transmittance at θ0 = 45◦ represented in figures 10 and 11
with circles for the multilayer with N = 64 slabs, and compare

it with the transmittance of the multilayer with N = 256 for
the same polarizations represented by a solid line.

Here we see that the spectrum of the smaller structure is
contained in the transmittance of the larger multilayer as in the
case of normal incidence. This scaling of the transmittance
spectra by a factor of two is expected from the self-similarity
of the structure by the same factor. One structure of L steps
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Figure 10. Transmittance spectra for incidence angle θ0 = 45◦. For TE polarization we see that the spectrum of the structure with N = 64
layers shown as circles in the figure is contained in the spectrum for the multilayer with N = 256 layers. Here the parameter λ0/λ goes from
0.0 to 1.0 for the structure with N = 64 layers, and from 0.0 to 1/22 for the structure with N = 256 layers. In this case the transmittance is
very similar for both structures.

Figure 11. Transmittance spectra for incidence angle θ0 = 45◦. For TM polarization we see that the spectrum of the structure with N = 64
layers shown as circles in the figure is contained in the spectrum for the multilayer with N = 256 layers. Here the parameter λ0/λ goes from
0.0 to 1.0 for the structure with N = 64 layers, and from 0.0 to 1/22 for the structure with N = 256 layers. In this case the transmittance is
very similar for both structures. We observe a better transmittance for TM polarization.

encompasses the structures of all previous steps. Suppose, for
example, that we have the structure of N = 256 layers and we
take only the part corresponding to 128 layers; if we multiply
by two the phase shift suffered by a plane wave in this part,
we obtain the same phase shift as that of a plane wave that
travels through the structure of 256 layers. This is equivalent to
reducing the wavelength by half, or multiplying the frequency
by two. The scaling is also observed for the transmittance
spectra of Cantor-like multilayer structures [4], and it has
been demonstrated analytically that spectral self-similarity is
a characteristic property of geometrical quasiperiodicity [13].
For the structure presented in this work, observe self-similarity
even in structures with very few layers. These results are valid
for any value of λ0 with λ0/λ in the interval [0, 1].

4. Conclusions

In this work we present a theoretical analysis of the
transmittance of a new deterministic aperiodic multilayer
structure whose refractive index profile is modulated by the

self-similar aperiodic 1s-counting sequence. For equal optical
thicknesses of the structure’s layers, every incidence angle
and both polarizations TE and TM, the transmittance spectrum
for the deterministic aperiodic structure presented here shows
self-similarity even with structures having only a few layers,
the spectrum for these structures being intermediate between
that produced by a periodic multilayer structure and the one
produced by a disordered one. We find this behavior for every
value of λ0 with λ0/λ in the interval [0, 1].
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